Crean órganos del tamaño de un chip

Tienen casi el grosor de una pantalla de microscopio, pero funcionan. Son máquinas pequeñas, conectadas a toda clase de tubos y alambres para ayudar a imitar la fisiología humana: verdaderos órganos artificiales.

Sí: un pulmón en un chip, por ejemplo tiene las células de vasos sanguíneos en un lado y el tejido celular en el otro, mientras que pequeñas bombas y vacíos modelan la respiración y el flujo de sangre.

Eso es lo que busca impulsar el Centro de Medicina Translacional del National Institute of Health de Estados Unidos, que financiará 17 desarrollos.

Entre los proyectos figuran modelos de piel, pulmón, estómago, hígado y cerebro.

Se espera que esos chips provean una manera confiable y barata de estudiar enfermedades humanas, en parte al permitir la interacción de diferentes tipos de células con el ambiente tridimensional en el que las células viven en tejidos intactos. En los cultivos planos de células, estas no funcionan de la forma como lo hacen en el cuerpo.

La FDA de Estados Unidos ayudará a explorar cómo esta nueva tecnología puede ser usada para predecir la seguridad de medicinas antes de ser probadas en personas. Los estudios en animales son considerados esenciales, pero son caros y no siempre confiables. Los hígados de ratas, por ejemplo, pueden manejar unas toxinas que envenenan sus contrapartes humanas. De acuerdo con datos del NIH un 30% de drogas experimentales que han fallado en humanos al producir toxicidad pese a resultados positivos en modelos animales.

Imagen de un bazo en un chip. Wyss Institute

Nuevas aspirinas contra el cáncer

Una nueva clase de aspirina puede reducir el crecimiento de cánceres de colon, páncreas, seno, pulmón y próstata, así como ciertas clases de leucemia, dijeron científicos en Nueva York.

Los investigadores de la Escuela de Medicina de la City University of New York crearon cuatro formas nuevas de aspirina que liberan óxido nítrico y sulfuro de hidrógeno que, reportaron en un paper en medical Chemistry Letter, tienen propiedades anticancerígenas.

Aunque la aspirina regular y otras drogas antiinflamatorias no esteroides se han mostrado promisorias para detener el crecimiento de tumores al atacar la inflamación, producen efectos indeseados, como el sangrado cerebral y gastrointestinal, así como toxicidad hepática.

Las llamadas aspirinas NOSH no parecen afectar los tejidos adyacentes al tumor. Uno de los cuatro tipos examinados parece ser más de 100.000 veces más efectivo contra el cáncer que la aspirina normal.

El oro ayuda contra tumores cerebrales

Conscientes de que una cirugía de cerebro para extirpar un tumor podría desencadenar en serios problemas para el paciente, científicos se idearon una manera de marcarlos: con nanopartículas de oro.

Tanto es el peligro que entre médicos no es raro escuchar “no es una cirugía de cerebro” cuando se quiere restarle importancia a una intervención.

Para ayudar a los cirujanos en situaciones en las que requieren extrema precisión, investigadores del grupo del profesor Adam Wax en el Instituto de Fotónica Fitzpatrick y del Departamento de Ingeniería Biomédica de Duke University propusieron una manera de explotar las propiedades ópticas únicas de esas nanopartículas para distinguir un tumor cerebral del tejido sano que lo rodea, tejido por demás vital para el paciente.

Los hallazgos serán presentados la próxima semana en el encuentro anual de la Sociedad Óptica en California.

Las técnicas actuales para marcar los tumores del cerebro varían, pero todas cuentan con sus limitaciones, como la imposibilidad de poseer imágenes en tiempo real sin equipos grandes y costosos o la toxicidad y reducido ciclo de vida a ciertos marcadores.

Las nanopartículas de oro –tan pequeñas que 500 de ellas unidas cabrían en un cabello humano- podrían aportar una mejor forma de marcar el tejido tumoral dado que no son tóxicas y su producción es relativamente barata.

¿Cómo funciona? Los científicos sintetizaron nanopartículas de oro con forma de bastones o palos con distinta relación longitud-ancho. Las partículas de distinto tamaño presentan propiedades ópticas diferentes, de modo que al controlar el crecimiento de los nanobastones el equipo pudo ajustar las partículas para reflejar una frecuencia específica de luz.

Luego unieron esas partículas a anticuerpos que se unen a ciertas proteínas del factor receptor del crecimiento que se hallan en altas concentraciones fuera de las células cancerosas. Cuando los anticuerpos se adhieren a las células con cáncer, las nanopartículas de oro marcan su presencia.

El desarrollo fue probado en pedazos de tumores con tejido cerebral de ratón.

En la imagen se aprecian soluciones con las nanopartículas y las correspondientes imágenes fantasma. Cortesía Kevin Seekell.