Investigadores de la Universidad Oberta de Catalunya (UOC) desarrollaron un algoritmo capaz de distinguir a usuarios de las redes sociales que son infelices analizando los textos e imágenes que comparten, una herramienta que esperan que sea útil para ayudar a diagnosticar posibles problemas de salud mental.
La investigación reveló que los usuarios hispanohablantes son más propensos que los angloparlantes a mencionar los problemas sobre sus relaciones cuando se sienten deprimidos.
El algoritmo, entrenado en búsquedas en Instagram, Facebook y Twitter, se ha basado en la teoría de la elección de William Glasser, según la cual hay cinco necesidades básicas que están en los cimientos de todo comportamiento humano: supervivencia, poder, libertad, pertenencia y diversión.
Según los expertos, estas necesidades influyen en qué imagen elegimos para subir a nuestro perfil de Instagram.
“Cómo nos mostramos en las redes sociales puede proporcionar información útil sobre comportamientos, personalidades, perspectivas, motivos y necesidades”, dijo Mohammad Mahdi Dehshibi, que ha coordinado la investigación en el grupo AI for Human Well-being (AIWELL) de los Estudios de Informática, Multimedia y Telecomunicación de la UOC.
Los investigadores han trabajado durante dos años en un modelo de aprendizaje profundo que identifica las cinco necesidades descritas por Glasser, utilizando datos multimodales como imágenes, texto, biografía o geolocalización.
Para hacer el estudio, que publica la revista “IEEE Transactions on Affective Computing”, analizaron 86 perfiles de Instagram, publicados en español y en persa.
Apoyándose en redes neuronales y bases de datos, los expertos entrenaron un algoritmo para que identificara el contenido de las imágenes y clasificara el contenido textual, asignándoles distintas etiquetas propuestas por psicólogos, quienes compararon los resultados con una base de datos de más de 30.000 imágenes, leyendas y comentarios.